LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem

نویسندگان

  • S. Bulchand
  • E. A. Grove
  • F. D. Porter
  • S. Tole
چکیده

We are interested in the early mechanisms that initiate regional patterning in the dorsal telencephalon, which gives rise to cerebral cortex. Members of the LIM-homeodomain (LIM-HD) family of transcription factors are implicated in patterning and cell fate specification in several systems including the mammalian forebrain. Mice in which Lhx2 is disrupted were reported to have reduced telencephalic development, and the hippocampal primordium appeared to be missing, by morphological observation. We hypothesized that this may be due to a defect in the cortical hem, a Wnt- and Bmp-rich putative signaling center in the medial telencephalon, a source of regulatory signals for hippocampal development. We asked if the expression of any known hem-specific signaling molecule is deficient in Lhx2-/- mice. Our results reveal, unexpectedly, that at embryonic day (E)12.5, what appears to be some spared 'lateral' cortex is instead an expanded cortical hem. Normally restricted to the extreme medial edge of the telencephalon, the hem covers almost the entire dorsal telencephalon in the Lhx2-/- mice. This indicates a role for Lhx2 in the regulation of the extent of the cortical hem. In spite of an expanded, mislocated hem in the Lhx2-/- telencephalon, a potential source of ectopic dorsalizing cues, no hippocampal differentiation is detected in tissue adjacent to the mutant hem, nor does the overall dorsoventral patterning appear perturbed. We propose that Lhx2 is involved at a crucial early step in patterning the telencephalon, where the neuroepithelium is first divided into presumptive cortical tissue, and the cortical hem. The defect in the Lhx2-/- telencephalon appears to be at this step.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical genetic interactions between FOXG1 and LHX2 regulate the formation of the cortical hem in the developing telencephalon

During forebrain development, a telencephalic organizer called the cortical hem is crucial for inducing hippocampal fate in adjacent cortical neuroepithelium. How the hem is restricted to its medial position is therefore a fundamental patterning issue. Here, we demonstrate that Foxg1-Lhx2 interactions are crucial for the formation of the hem. Loss of either gene causes a region of the cortical ...

متن کامل

Differential expression of LIM-homeodomain factors in Cajal-Retzius cells of primates, rodents, and birds.

Reelin-expressing Cajal-Retzius (CR) cells are among the earliest generated cells in the mammalian cerebral cortex and are believed to be crucial for both the development and the evolution of a laminated pattern in the pallial wall of the telencephalon. LIM-homeodomain (LIM-hd) transcription factors are expressed during brain development in a highly restricted and combinatorial manner, and they...

متن کامل

Lhx2 regulates the timing of β-catenin-dependent cortical neurogenesis.

The timing of cortical neurogenesis has a major effect on the size and organization of the mature cortex. The deletion of the LIM-homeodomain transcription factor Lhx2 in cortical progenitors by Nestin-cre leads to a dramatically smaller cortex. Here we report that Lhx2 regulates the cortex size by maintaining the cortical progenitor proliferation and delaying the initiation of neurogenesis. Th...

متن کامل

Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis

Müller glia (MG) are the principal glial cell type in the vertebrate retina. Recent work has identified the LIM homeodomain factor encoding gene Lhx2 as necessary for both Notch signaling and MG differentiation in late-stage retinal progenitor cells (RPCs). However, the extent to which Lhx2 interacts with other intrinsic regulators of MG differentiation is unclear. We investigated this question...

متن کامل

Lhx2 Regulates the Development of the Forebrain Hem System

Early brain development is regulated by the coordinated actions of multiple signaling centers at key boundaries between compartments. Three telencephalic midline structures are in a position to play such roles in forebrain patterning: The cortical hem, the septum, and the thalamic eminence at the diencephalic-telencephalic boundary. These structures express unique complements of signaling molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2001